Django Audit Events

Jul 21, 2022

Contents:

1 Introduction 3
.1 Inmstallation e e e e e e 3
1.2 Philosophy e e e e e e 3

2 Quick Start 5
2.1 Creating events in VIEWS v v v v v v v et e 5
2.2 Creating events outside of the view scope Lo

3 Configuration 7

4 Advanced Usage 9
4.1 Common content for multiple events e e e e e 9
4.2 Swappingeventmodel L e e e e e e e e e e 9
4.3 Archivingaged auditevents L. L e e 10

Index 11

Django Audit Events

Extensible custom audit events for humans! This Django app allows you to easily create your own events in your
project. Currently only works on PostgreSQL.

Let’s have a look:

def awesome_view (request) :
foo_obj = Foo.objects.get (pk=1)
Do something with foo_obj...
request.audit_context.create_event (
foo_obj,
something="done",
bar="baz"

This will create an audit event, including the request URL, logged-in user, remote IP address, and the following event
content:

>>> event.content
{"something": "done", "bar: "baz"}

The content may contain anything that is passed to create_event method as keyword arguments, as long as they
are JSON serializable.

Contents: 1

Django Audit Events

2 Contents:

CHAPTER 1

Introduction

1.1 Installation

You can install this package from PyPI:

’pip install django—audit-events

You need to append it to the INSTALLED_APPS:

INSTALLED_APPS = [

'django_audit_events',

And the MIDDLEWARE:

MIDDLEWARE = [

'django_audit_events.middleware.AuditEventsMiddleware',

Then migrate your project:

’python manage.py migrate

Now you are ready to create your events, take a look at Quick Start.

1.2 Philosophy

django-audit-events is the product of the following technical decisions.

» All events must be associated with one content object. Everything else is optional.

https://pypi.org/

Django Audit Events

 Events should not be created automatically (or magically), because “Explicit is better than implicit”.
* Multiple events can be created when processing a single request.
* Events may be created without an HTTP request, such as a Celery task or a management command.

* Developers should not need to check if an audit context exists or not when creating events. That is the reason
why AuditContextMixin always creates a blank audit context.

4 Chapter 1. Introduction

http://www.celeryproject.org/

CHAPTER 2

Quick Start

This page shows some examples of the basic usage. Audit events are created by the audit context. There are three
methods for creating events:

new_event () It only creates an event instance. All fields, including the content_object, must be set by the
developer. Also, after setting fields in the event, it must be saved.

create_event (content_object, *xcontent) It creates an event instance and sets the
content_object. All other keyword arguments are stored in the content field of the event. Then
the model is saved.

create_fields_event (content_object, xfields, =**xcontent) It behaves like create_event
but additionally appends current field values to event content.

2.1 Creating events in views

Since the audit context is available in the request object, events can easily be generated in views:

def awesome_view (request, =*args, xxkwargs):
foo_obj = Foo.objects.get (pk=1)
Do something with foo_obj. ..
request.audit_context.create_event (
foo_obj,
something="done",
bar="baz"

You can still access the audit context from the request object, even if you have class-based views.

Django Audit Events

2.2 Creating events outside of the view scope

If you want to create your audit events in your models or other classes, you can either pass audit_context as an argument
or use AuditContextMixin

Example using argument:

def my_function(argl, arg2, audit_context=AuditContext (), =xargs, =*xkwargs):
foo_obj = Foo.objects.get (pk=1)
Do something with foo_obj...
audit_context.create_event (
foo_obj,
something="done",
bar="baz"

Example using mixin:

class Foo (models.Model, AuditContextMixin):

def my_method(self) :
self.audit_context.create_event (self, ...)

You need to provide the audit context from view before running your method in the model:

foo_obj = Foo.objects.get (pk=1)
foo_obj.audit_context = request.audit_context
foo_obj.my_method()

6 Chapter 2. Quick Start

CHAPTER 3

Configuration

You can configure Django Audit Events by overriding the variables below in your settings.py

AUDIT EVENT_ MODEL - default: django_audit_events.AuditEvent The event model in use, in the
form of "app.Model"

AUDIT_EVENT_ARCHIVE_MODEL - default: django_audit_events.ArchivedAuditEvent The
archive event model in use, in the form of "app.Model"

AUDIT_ INCLUDE_QUERY_ PARAMS - default: False Configuration flag to store query params from requests in
the audit context and eventually in audit events.

AUDIT_ INCLUDE_POST_DATA - default: False Configuration flag to store post data from requests in the audit
context and eventually in audit events.

AUDIT MASK_POST_ FIELDS - default: ("password",) Post data may contain PII or any other sensitive in-
formation such as credit card numbers which you may want to avoid storing in your database. Define the names
of the fields that contain sensitive information.

AUDIT INCLUDE_HEADERS - default: False Configuration parameter to determine which header data from re-
quests will be stored in the audit context and eventually in audit events. Define the names of the headers as a
list —e.g. AUDIT_INCLUDE_HEADERS = ["HTTP_MY_ CUSTOM_HEADER", ..]

AUDIT CLIENT_IP_RESOLVER FUNCTION - default: django_audit_events.utils.get_client_ip
To set custom client ip getter, define your function path here.

Django Audit Events

8 Chapter 3. Configuration

CHAPTER 4

Advanced Usage

Django Audit Events app is highly extensible.

4.1 Common content for multiple events

The audit context can store extra data to be present in every event it creates.

audit_context = AuditContext ()

audit_context.extra_data["foo"] = "bar"
event = audit_context.new_event ()
assert event.content["foo"] == "bar"

You can even override this data for a single event if you need.

audit_context = AuditContext ()

audit_context.extra_data["foo"] = "bar"
event = audit_context.create_event (content_object, foo="baz")
assert event.content["foo"] == "baz"

4.2 Swapping event model

You can create your own audit event models by extending django_audit_events.models.
AbstractAuditEvent.

class MyEvent (AbstractAuditEvent) :

class Meta (AbstractAuditEvent .Meta) :
swappable = "AUDIT_EVENT_MODEL"

Django Audit Events

4.3 Archiving aged audit events

Old audit events may be archived in order to prevent database from being overloaded.

from celery.schedules import crontab

CELERYBEAT_SCHEDULE = {
"archive-old-audit-events": {

"task": "django_audit_events.tasks.archive_old_audit_events",
"schedule": crontab (hour=0, minute=0),
nargsn: ()’

"kwargs": {"older_than": 90}
b

Using CELERYBEAT__SCHEDULE configuration like one above, audit events older than 90 days will be archived every
day.

10 Chapter 4. Advanced Usage

Index

AUDIT CLIENT_IP RESOLVER_FUNCTION
- default:
django_audit_events.utils.get_client_ip,

7

AUDIT_EVENT_ARCHIVE_MODEL - default:
django_audit_events.ArchivedAuditEvent,
7

AUDIT_EVENT_MODEL - default:
django_audit_events.AuditEvent, 7

AUDIT_INCLUDE_HEADERS - default:
False, 7

AUDIT_INCLUDE_POST_DATA - default:
False, 7

AUDIT_INCLUDE_QUERY_PARAMS - default:
False,7

AUDIT_MASK_POST_FIELDS - default: Cpam—
word",), T

C

create_event (content_object,
*xcontent), 5

create_fields_event (content_object,
xfields, =**content),5

N

new_event (), 5

11

	Introduction
	Installation
	Philosophy

	Quick Start
	Creating events in views
	Creating events outside of the view scope

	Configuration
	Advanced Usage
	Common content for multiple events
	Swapping event model
	Archiving aged audit events

	Index

